mindmap root((Regression Analysis) Continuous <br/>Outcome Y {{Unbounded <br/>Outcome Y}} )Chapter 3: <br/>Ordinary <br/>Least Squares <br/>Regression( (Normal <br/>Outcome Y) {{Nonnegative <br/>Outcome Y}} )Chapter 4: <br/>Gamma Regression( (Gamma <br/>Outcome Y) {{Bounded <br/>Outcome Y <br/> between 0 and 1}} )Chapter 5: Beta <br/>Regression( (Beta <br/>Outcome Y) {{Nonnegative <br/>Survival <br/>Time Y}} )Chapter 6: <br/>Parametric <br/> Survival <br/>Regression( (Exponential <br/>Outcome Y) (Weibull <br/>Outcome Y) (Lognormal <br/>Outcome Y) )Chapter 7: <br/>Semiparametric <br/>Survival <br/>Regression( (Cox Proportional <br/>Hazards Model) (Hazard Function <br/>Outcome Y) Discrete <br/>Outcome Y {{Binary <br/>Outcome Y}} {{Ungrouped <br/>Data}} )Chapter 8: <br/>Binary Logistic <br/>Regression( (Bernoulli <br/>Outcome Y) {{Grouped <br/>Data}} )Chapter 9: <br/>Binomial Logistic <br/>Regression( (Binomial <br/>Outcome Y) {{Count <br/>Outcome Y}} {{Equidispersed <br/>Data}} )Chapter 10: <br/>Classical Poisson <br/>Regression( (Poisson <br/>Outcome Y) {{Overdispersed <br/>Data}} )Chapter 11: <br/>Negative Binomial <br/>Regression( (Negative Binomial <br/>Outcome Y)
11 Umami-zing Negative Binomial Regression
Fun fact!
Umami-zing! Savory to the point where you start craving a second plate… and a third.