mindmap root((Regression Analysis) Continuous <br/>Outcome Y {{Unbounded <br/>Outcome Y}} )Chapter 3: <br/>Ordinary <br/>Least Squares <br/>Regression( (Normal <br/>Outcome Y) {{Nonnegative <br/>Outcome Y}} )Chapter 4: <br/>Gamma Regression( (Gamma <br/>Outcome Y) {{Bounded <br/>Outcome Y <br/> between 0 and 1}} )Chapter 5: Beta <br/>Regression( (Beta <br/>Outcome Y) {{Nonnegative <br/>Survival <br/>Time Y}} )Chapter 6: <br/>Parametric <br/> Survival <br/>Regression( (Exponential <br/>Outcome Y) (Weibull <br/>Outcome Y) (Lognormal <br/>Outcome Y) )Chapter 7: <br/>Semiparametric <br/>Survival <br/>Regression( (Cox Proportional <br/>Hazards Model) (Hazard Function <br/>Outcome Y) Discrete <br/>Outcome Y {{Binary <br/>Outcome Y}} {{Ungrouped <br/>Data}} )Chapter 8: <br/>Binary Logistic <br/>Regression( (Bernoulli <br/>Outcome Y) {{Grouped <br/>Data}} )Chapter 9: <br/>Binomial Logistic <br/>Regression( (Binomial <br/>Outcome Y) {{Count <br/>Outcome Y}} {{Equidispersed <br/>Data}} )Chapter 10: <br/>Classical Poisson <br/>Regression( (Poisson <br/>Outcome Y) {{Overdispersed <br/>Data}} )Chapter 11: <br/>Negative Binomial <br/>Regression( (Negative Binomial <br/>Outcome Y) {{Overdispersed or <br/>Underdispersed <br/>Data}} )Chapter 13: <br/>Generalized <br/>Poisson <br/>Regression( (Generalized <br/>Poisson <br/>Outcome Y) {{Zero Inflated <br/>Data}} )Chapter 12: <br/>Zero Inflated <br/>Poisson <br/>Regression( (Zero Inflated <br/>Poisson <br/>Outcome Y) {{Categorical <br/>Outcome Y}} {{Nominal <br/>Outcome Y}} )Chapter 14: <br/>Multinomial <br/>Logistic <br/>Regression( (Multinomial <br/>Outcome Y) {{Ordinal <br/>Outcome Y}} )Chapter 15: <br/>Ordinal <br/>Logistic <br/>Regression( (Logistic <br/>Distributed <br/>Cumulative Outcome <br/>Probability)
15 Tang-tastic Ordinal Logistic Regression
Fun fact!
Tang-tastic! So tangy it could wake you up better than coffee.